国产自产21区,亚洲97,免费毛片网,国产啪视频,青青青国产在线观看,国产毛片一区二区三区精品

山東科威數控機床有限公司銑床官方網站今天是:2024-12-31切換城市[全國]-網站地圖
推薦產品 :
推薦新聞
技術文章當前位置:技術文章>

混合監測的受損索和集中載荷遞進式識別方法

時間:2023-11-04    作者: 管理員

混合監測的受損索和集中載荷遞進式識別方法
【專利摘要】混合監測的受損索和集中載荷遞進式識別方法基于混合監測、通過監測索結構溫度、環境溫度、集中載荷變化程度和受損索損傷程度來決定是否需要更新索結構的力學計算基準模型,得到新的計入集中載荷變化程度、受損索損傷程度、溫度的索結構的力學計算基準模型,在此模型的基礎上依據被監測量的當前數值向量同被監測量當前初始數值向量、單位損傷被監測量數值變化矩陣和待求的當前名義損傷向量間存在的近似線性關系,據此可以在有溫度變化時,能夠剔除干擾因素的影響,準確地識別受損索和集中載荷變化量。
【專利說明】混合監測的受損索和集中載荷遞進式識別方法
【技術領域】
[0001]斜拉橋、懸索橋、桁架結構等結構有一個共同點,就是它們有許多承受拉伸載荷的部件,如斜拉索、主纜、吊索、拉桿等等,該類結構的共同點是以索、纜或僅承受拉伸載荷的桿件為支承部件,為方便起見,本方法將該類結構表述為“索結構”,并將索結構的所有承載索、承載纜,及所有僅承受軸向拉伸或軸向壓縮載荷的桿件(又稱為二力桿件),為方便起見統一稱為“索系統”,本方法中用“支承索”這一名詞指稱承載索、承載纜及僅承受軸向拉伸或軸向壓縮載荷的桿件,有時簡稱為“索”,所以在后面使用“索”這個字的時候,對桁架結構實際就是指二力桿件。在結構服役過程中,對支承索或索系統的健康狀態的正確識別關系到整個索結構的安全。在環境溫度發生變化時,索結構的溫度一般也會隨著發生變化,在索結構溫度發生變化時,索結構承受的集中載荷也可能發生變化,實際上即使索結構的溫度不發生變化,索結構承受的集中載荷也可能單獨發生變化,同時索結構的健康狀態也可能在發生變化,在這種復雜條件下,本方法基于混合監測(本方法通過對本節前述不同類型的索結構的可測量參數的變化的混合監測來判斷索結構的健康狀態,本方法將所有被監測的索結構特征參量統稱為“被監測量”,由于此時被監測量是由索結構的不同類型的可測量參數混合組成,本方法稱此為混合監測)來識別受損索和索結構承受的集中載荷的變化量,屬工程結構健康監測領域。
【背景技術】
[0002]剔除載荷變化和結構溫度變化對索結構健康狀態識別結果的影響,從而準確地識別結構的健康狀態的變化,是目前迫切需要解決的問題;同樣的,剔除結構溫度變化和結構健康狀態變化對結構承受的集中載荷的變化量的識別結果的影響,對結構安全同樣具有重要意義,本方法公開了解決這兩個問題的一種有效方法。
[0003]支承索受損對索結構安全是一項重大威脅,基于結構健康監測技術來識別索結構的索系統中的受損索是一種極具潛力的方法。
[0004]當索結構承受的集中載荷出現變化時、或索結構的溫度發生變化時、或索系統的健康狀態發生變化(例如發生損傷)時、或者三種情況同時發生時,會引起索結構的可測量參數的變化,例如會引起索力的變化,會影響索結構的變形或應變,會影響索結構的形狀或空間坐標,會引起過索結構的每一點的任意假想直線的角度坐標的變化(例如結構表面任意一點的切平面中的任意一根過該點的直線的角度坐標的變化,或者結構表面任意一點的法線的角度坐標的變化),所有的這些變化都包含了索系統的健康狀態信息,也包含了集中載荷的變化量信息,也就是說可以利用索結構的可測量參數來識別受損索和集中載荷的變化量。
[0005]目前已公開的技術、方法中,有些僅僅能夠在其它所有條件不變時(僅僅只有結構承受的載荷發生變化)識別結構承受載荷的變化,有些僅僅能夠在其它所有條件不變時(僅僅只有結構健康狀態發生變化)識別結構健康狀態的變化,有些僅僅能夠在其它所有條件不變時(僅僅只有結構溫度和結構健康狀態發生變化)識別結構(環境)溫度和結構健康狀態的變化,目前還沒有一種公開的、有效的方法能夠同時識別結構承受載荷、結構(環境)溫度和結構健康狀態的變化,或者說在結構所承受的載荷和結構(環境)溫度同時變化時,還沒有有效的方法能夠識別結構健康狀態的變化,而結構承受的載荷和結構(環境)溫度是常常變化的,所以如何在結構承受的載荷和結構(環境)溫度變化時,剔除載荷變化和結構溫度變化對索結構健康狀態識別結果的影響,從而準確地識別結構的健康狀態的變化,是目前迫切需要解決的問題,本方法公開了一種方法,可以在索結構承受的集中載荷和結構(環境)溫度發生變化時,剔除載荷變化和結構溫度變化對索結構健康狀態識別結果的影響,基于被監測量監測來識別受損索,對索結構的安全具有重要的價值。
[0006]同樣的,在目前公開的方法中,還沒有出現能夠剔除結構溫度變化和支承索健康狀態影響的、從而實現集中載荷變化程度的正確識別的方法,而對結構來說,載荷變化的識別也是非常重要的。本方法在識別出受損索的同時,還能同時識別出集中載荷的變化,即本方法能夠剔除結構溫度變化和支承索健康狀態變化的影響,實現集中載荷變化程度的正確識別。
[0007]也就是說,本方法實現了已有方法不可能具備的兩種功能。

【發明內容】

[0008]技術問題:本方法公開了一種方法,實現了已有方法不可能具備的兩種功能,分別是,一、在結構承受的集中載荷和結構(環境)溫度變化時,能夠剔除集中載荷變化和結構溫度變化對索結構健康狀態識別結果的影響,從而準確地識別出受損索的結構健康監測方法;二、本方法在識別出受損索的同時,還能同時識別出集中載荷的變化,即本方法能夠剔除結構溫度變化和支承索健康狀態變化的影響,實現集中載荷變化程度的正確識別。
[0009]技術方案:本方法由三部分組成。分別是:一、“本方法的索結構的溫度測量計算方法”;二、建立索結構健康監測系統所需的知識庫和參量的方法、基于知識庫(含參量)和實測被監測量的結構健康狀態評估方法;三、健康監測系統的軟件和硬件部分。
[0010]首先確認索結構承受的可能發生變化的集中載荷的數量。根據索結構所承受的集中載荷的特點,確認其中“所有可能發生變化的集中載荷”,或者將所有的集中載荷視為“所有可能發生變化的集中載荷”,設共有JZW個可能發生變化的集中載荷。
[0011]集中載荷分為集中力和集中力偶兩種,在坐標系中,例如在笛卡爾直角坐標系中,一個集中力可以分解成三個分量,同樣的,一個集中力偶也可以分解成三個分量,在本方法中將一個集中力分量或一個集中力偶分量稱為一個集中載荷。
[0012]設索結構的支承索的數量和JZW個“所有可能發生變化的集中載荷”的數量之和為N。為敘述方便起見,本方法統一稱被評估的支承索和“所有可能發生變化的集中載荷”為“被評估對象”,共有N個被評估對象。給被評估對象連續編號,該編號在后續步驟中將用于生成向量和矩陣。
[0013]被監測的多類參量可以包括:索力、應變、角度和空間坐標,分別敘述如下:
[0014]設索系統中共有Q根支承索,索結構的被監測的索力數據由索結構上M1個指定索的M1個索力數據來描述,索結構索力的變化就是所有指定索的索力的變化。每次共有M1個索力測量值或計算值來表征索結構的索力信息。M1是一個不小于O的整數。
[0015]索結構的被監測的應變數據可由索結構上K2個指定點的、及每個指定點的L2個指定方向的應變來描述,索結構應變數據的變化就是K2個指定點的所有被測應變的變化。每次共有M2 (M2=K2XL2)個應變測量值或計算值來表征索結構應變。M2是一個不小于O的整數。
[0016]索結構的被監測的角度數據由索結構上K3個指定點的、過每個指定點的L3個指定直線的、每個指定直線的H3個角度坐標分量來描述,索結構角度的變化就是所有指定點的、所有指定直線的、所有指定的角度坐標分量的變化。每次共有M3 (M3=K3XL3XH3)個角度坐標分量測量值或計算值來表征索結構的角度信息。M3是一個不小于O的整數。
[0017]索結構的被監測的形狀數據由索結構上K4個指定點的、及每個指定點的L4個指定方向的空間坐標來描述,索結構形狀數據的變化就是K4個指定點的所有坐標分量的變化。每次共有M4 (M4=K4XL4)個坐標測量值或計算值來表征索結構形狀。M4是一個不小于O的整數。
[0018]綜合上述被監測量,整個索結構共有M (M=Mi+M2+M3+M4)個被監測量,定義參量K(K=M1+K2+K3+K4), K 和 M 不得小于 No
[0019]為方便起見,在本方法中將“索結構的被監測的所有參量”簡稱為“被監測量”。給M個被監測量連續編號,該編號在后續步驟中將用于生成向量和矩陣。本方法用用變量j表示這一編號,j=l, 2, 3,…,Μ。
[0020]本方法的第一部分:“本方法的索結構的溫度測量計算方法”。
[0021]首先確定“本方法的索結構的溫度測量計算方法”。由于索結構的溫度可能是變化的,例如索結構的不同部位的溫度是隨著日照強度的變化而變化、隨著環境溫度的變化而變化的,索結構的表面與內部的溫度有時可能是隨時間變化的,索結構的表面與內部的溫度可能是不同的,索結構的表`面與內部的溫度差是隨時間變化的,這就使得考慮溫度條件時的索結構的力學計算和監測相當復雜,為簡化問題、減少計算量和降低測量成本,更是為了提高計算精度,本方法提出“本方法的索結構的溫度測量計算方法”,具體如下:
[0022]第一步,查詢或實測得到索結構組成材料及索結構所處環境的隨溫度變化的傳熱學參數,利用索結構的設計圖、竣工圖和索結構的幾何實測數據,利用這些數據和參數建立索結構的傳熱學計算模型。查詢索結構所在地不少于2年的近年來的氣象資料,統計得到這段時間內的陰天數量記為T個陰天,統計得到T個陰天中每一個陰天的O時至次日日出時刻后30分鐘之間的最高氣溫與最低氣溫,日出時刻是指根據地球自轉和公轉規律確定的氣象學上的日出時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日出時亥IJ,每一個陰天的O時至次日日出時刻后30分鐘之間的最高氣溫減去最低氣溫稱為該陰天的日氣溫的最大溫差,有T個陰天,就有T個陰天的日氣溫的最大溫差,取T個陰天的日氣溫的最大溫差中的最大值為參考日溫差,參考日溫差記為Λ?;。查詢索結構所在地和所在海拔區間不少于2年的近年來的氣象資料或實測得到索結構所處環境的溫度隨時間和海拔高度的變化數據和變化規律,計算得到索結構所在地和所在海拔區間不少于2年的近年來的索結構所處環境的溫度關于海拔高度的最大變化率ATh,為方便敘述取ATh的單位為。C /m。在索結構的表面上取“R個索結構表面點”,后面將通過實測得到這R個索結構表面點的溫度,稱實測得到的溫度數據為“R個索結構表面溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這R個索結構表面點的溫度,就稱計算得到的溫度數據為“R個索結構表面溫度計算數據”。在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足的條件在后面敘述。從索結構所處的最低海拔到最聞海拔之間,在索結構上均布選取不少于二個不同的海拔聞度,在每一個選取的海拔聞度處、在水平面與索結構表面的交線處至少選取兩個點,從選取點處引索結構表面的外法線,所有選取的外法線方向稱為“測量索結構沿壁厚的溫度分布的方向”,測量索結構沿壁厚的溫度分布的方向與“水平面與索結構表面的交線”相交,在選取的測量索結構沿壁厚的溫度分布的方向中必須包括索結構的向陽面外法線方向和索結構的背陰面外法線方向,沿每一個測量索結構沿壁厚的溫度分布的方向在索結構中均布選取不少于三個點,測量所有被選取點的溫度,測得的溫度稱為“索結構沿厚度的溫度分布數據”,其中沿與同一“水平面與索結構表面的交線”相交的、“測量索結構沿壁厚的溫度分布的方向”測量獲得的“索結構沿厚度的溫度分布數據”,在本方法中稱為“相同海拔高度索結構沿厚度的溫度分布數據”,設選取了 H個不同的海拔高度,在每一個海拔高度處,選取了 B個測量索結構沿壁厚的溫度分布的方向,沿每個測量索結構沿壁厚的溫度分布的方向在索結構中選取了 E個點,其中H和E都不小于3,B不小于2,設HBE為H與B和E的乘積,對應的共有HBE個“測量索結構沿厚度的溫度分布數據的點”,后面將通過實測得到這HBE個“測量索結構沿厚度的溫度分布數據的點”的溫度,稱實測得到的溫度數據為“HBE個索結構沿厚度溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這HBE個測量索結構沿厚度的溫度分布數據的點的溫度,就稱計算得到的溫度數據為“HBE個索結構沿厚度溫度計算數據”;設BE為B和E的乘積,本方法中在每一個選取的海拔高度處共有BE個“相同海拔高度索結構沿厚度的溫度分布數據”。在索結構所在地按照氣象學測量氣溫要求選取一個位置,將在此位置實測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫;在索結構所在地的空曠無遮擋處選取一個位置,該位置應當在全年的每一日都能得到該地所能得到的該日的最充分的日照,在該位置安放一塊碳鋼材質的平板,稱為參考平板,該參考平板的一面向陽,稱為向陽面,參考平板的向陽面是粗糙的和深色的,參考平板的向陽面應當在全年的每一日都能得到一塊平板在該地所能得到的該日的最充分的日照,參考平板的非向陽面覆有保溫材料,將實時監測得到參考平板的向陽面的溫度。本方法中對同一個量實時監測的任何兩次測量之間的時間間隔不得大于30分鐘,測量記錄數據的時刻稱為實際記錄數據時刻。
[0023]第二步,實時監測得到上述R個索結構表面點的R個索結構表面溫度實測數據,同時實時監測得到前面定義的索結構沿厚度的溫度分布數據,同時實時監測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫數據;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據序列,索結構所在環境的氣溫實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據按照時間先后順序排列,找到索結構所在環境的氣溫實測數據序列中的最高溫度和最低溫度,用索結構所在環境的氣溫實測數據序列中的最高溫度減去最低溫度得到索結構所在環境的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,記為ATemax ;由索結構所在環境的氣溫實測數據序列通過常規數學計算得到索結構所在環境的氣溫關于時間的變化率,該變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據序列,參考平板的向陽面的溫度的實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據按照時間先后順序排列,找到參考平板的向陽面的溫度的實測數據序列中的最高溫度和最低溫度,用參考平板的向陽面的溫度的實測數據序列中的最高溫度減去最低溫度得到參考平板的向陽面的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,記為Δ Tpmax ;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的所有R個索結構表面點的索結構表面溫度實測數據序列,有R個索結構表面點就有R個索結構表面溫度實測數據序列,每一個索結構表面溫度實測數據序列由一個索結構表面點的當日日出時刻到次日日出時刻后30分鐘之間的索結構表面溫度實測數據按照時間先后順序排列,找到每一個索結構表面溫度實測數據序列中的最高溫度和最低溫度,用每一個索結構表面溫度實測數據序列中的最高溫度減去最低溫度得到每一個索結構表面點的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,有R個索結構表面點就有R個當日日出時刻到次日日出時刻后30分鐘之間的最大溫差數值,其中的最大值記為ATsmax ;由每一索結構表面溫度實測數據序列通過常規數學計算得到每一個索結構表面點的溫度關于時間的變化率,每一個索結構表面點的溫度關于時間的變化率也隨著時間變化。通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的、在同一時刻、HBE個“索結構沿厚度的溫度分布數據”后,計算在每一個選取的海拔高度處共計BE個“相同海拔高度索結構沿厚度的溫度分布數據”中的最高溫度與最低溫度的差值,這個差值的絕對值稱為“相同海拔高度處索結構厚度方向最大溫差”,選取了 H個不同的海拔高度就有H個“相同海拔高度處索結構厚度方向最大溫差”,稱這H個“相同海拔高度處索結構厚度方向最大溫差”中的最大值為“索結構厚度方向最大溫差”,記為ATtmax。
[0024]第三步,測量計算獲得索結構穩態溫度數據;首先,確定獲得索結構穩態溫度數據的時刻,與決定獲得索結構穩態溫度數據的時刻相關的條件有六項,第一項條件是獲得索結構穩態溫度數據的時刻介于當日日落時刻到次日日出時刻后30分鐘之間,日落時刻是指根據地球自轉和公轉規律確定的氣象學上的日落時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日落時刻;第二項條件的a條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間 內,參考平板最大溫差ATpmaj^P索結構表面最大溫差ATsmax都不大于5攝氏度;第二項條件的b條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,在前面測量計算得到的環境最大誤差不大于參考日溫差Λ?;,且參考平板最大溫差Λ Tpmax減去2攝氏度后不大于Δ Temax,且索結構表面最大溫差Δ Tsmax不大于ATpmax ;只需滿足第二項的a條件和b條件中的一項就稱為滿足第二項條件;第三項條件是在獲得索結構穩態溫度數據的時刻,索結構所在環境的氣溫關于時間的變化率的絕對值不大于每小時0.1攝氏度;第四項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的溫度關于時間的變化率的絕對值不大于每小時0.1攝氏度;第五項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的索結構表面溫度實測數據為當日日出時刻到次日日出時刻后30分鐘之間的極小值;第六項條件是在獲得索結構穩態溫度數據的時刻,“索結構厚度方向最大溫差” ATtmax不大于I攝氏度;本方法利用上述六項條件,將下列三種時刻中的任意一種稱為“獲得索結構穩態溫度數據的數學時刻”,第一種時刻是滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第五項條件的時刻,第二種時刻是僅僅滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第六項條件的時刻,第三種時刻是同時滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第六項條件的時刻;當獲得索結構穩態溫度數據的數學時刻就是本方法中實際記錄數據時刻中的一個時,獲得索結構穩態溫度數據的時刻就是獲得索結構穩態溫度數據的數學時刻;如果獲得索結構穩態溫度數據的數學時刻不是本方法中實際記錄數據時刻中的任一個時刻,則取本方法最接近于獲得索結構穩態溫度數據的數學時刻的那個實際記錄數據的時刻為獲得索結構穩態溫度數據的時刻;本方法將使用在獲得索結構穩態溫度數據的時刻測量記錄的量進行索結構相關健康監測分析;本方法近似認為獲得索結構穩態溫度數據的時刻的索結構溫度場處于穩態,即此時刻的索結構溫度不隨時間變化,此時刻就是本方法的“獲得索結構穩態溫度數據的時刻”;然后,根據索結構傳熱特性,利用獲得索結構穩態溫度數據的時刻的“R個索結構表面溫度實測數據”和“HBE個索結構沿厚度溫度實測數據”,利用索結構的傳熱學計算模型,通過常規傳熱計算得到在獲得索結構穩態溫度數據的時刻的索結構的溫度分布,此時索結構的溫度場按穩態進行計算,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據包括索結構上R個索結構表面點的計算溫度,R個索結構表面點的計算溫度稱為R個索結構穩態表面溫度計算數據,還包括索結構在前面選定的HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度,HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度稱為“HBE個索結構沿厚度溫度計算數據”,當R個索結構表面溫度實測數據與R個索結構穩態表面溫度計算數據對應相等時,且“HBE個索結構沿厚度溫度實測數據”與“HBE個索結構沿厚度溫度計算數據”對應相等時,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據在本方法中稱為“索結構穩態溫度數據”,此時的“R個索結構表面溫度實測數據”稱為“R個索結構穩態表面溫度實測數據”,“HBE個索結構沿厚度溫度實測數據”稱為“HBE個索結構沿厚度穩態溫度實測數據”;在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足三個條件,第一個條件是當索結構溫度場處于穩態時,當索結構表面上任意一點的溫度是通過“R個索結構表面點”中與索結構表面上該任意點相鄰的點的實測溫度線性插值得到時,線性插值得到的索結構表面上該任意點的溫度與索結構表面上該任意點的實際溫度的誤差不大于5% ;索結構表面包括支承索表面;第二個條件是“R個索結構表面點”中在同一海拔高度的點的數量不小于4,且“R個索結構表面點”中在同一海拔高度的點沿著索結構表面均布;“R個索結構表面點”沿海拔高度的所有兩兩相鄰索結構表面點的海拔高度之差的絕對值中的最大值Ah不大于0.2°C除以Λ Th得到的數值,為方便敘述取Λ Th的單位為。C/m,為方便敘述取Ah的單位為m ;“R個索結構表面點”沿海拔高度的兩兩相鄰索結構表面點的定義是指只考慮海拔高度時,在“R個索結構表面點”中不存在一個索結構表面點,該索結構表面點的海拔高度數值介于兩兩相鄰索結構表面點的海拔高度數值之間;第三個條件是查詢或按氣象學常規計算得到索結構所在地和所在海拔區間的日照規律,再根據索結構的幾何特征及方位數據,在索結構上找到全年受日照時間最充分的那些表面點的位置,“R個索結構表面點”中至少有一個索結構表面點是索結構上全年受日照時間最充分的那些表面點中的一個點。
[0025]本方法的第二部分:建立索結構健康監測系統所需的知識庫和參量的方法、基于知識庫(含參量)和實測被監測量的結構健康狀態評估方法??砂慈缦虏襟E依次進行,以獲得更準確的被評估對象的健康狀態評估。
[0026]第一步:建立初始力學計算基準模型A。,在索結構竣工之時,或者在建立健康監測系統前,按照“本方法的索結構的溫度測量計算方法”測量計算得到“索結構穩態溫度數據”(可以用常規溫度測量方法測量,例如使用熱電阻測量),此時的“索結構穩態溫度數據”用向量T。表示,稱為初始索結構穩態溫度數據向量T。。在實測得到T。的同時,也就是在獲得初始索結構穩態溫度數據向量T。的時刻的同一時刻,使用常規方法直接測量計算得到索結構的所有被監測量的初始數。在實測計算得到初始索結構穩態溫度數據向量T。的同時,使用常規方法(查資料或實測)得到索結構所使用的各種材料的隨溫度變化的物理參數(例如熱膨脹系數)和力學性能參數(例如彈性模量、泊松比);在實測計算得到初始索結構穩態溫度數據向量T。的同時,也就是在獲得初始索結構穩態溫度數據向量T。的時刻的同一時亥IJ,使用常規方法實測計算得到索結構的實測計算數據。索結構的實測計算數據首先是包括支承索的無損檢測數據在內的能夠表達索的健康狀態的數據,索結構的實測計算數據還是包括索結構初始幾何數據、索力數據、拉桿拉力數據、初始索結構支座廣義坐標數據、索結構模態數據、結構應變數據、結構角度測量數據、結構空間坐標測量數據、載荷數據在內的實測數據。索結構的初始幾何數據可以是所有索的端點的空間坐標數據加上結構上一系列的點的空間坐標數據,目的在于根據這些坐標數據確定索結構的幾何特征。對斜拉橋而言,初始幾何數據可以是所有索的端點的空間坐標數據加上橋梁兩端上若干點的空間坐標數據,這就是所謂的橋型數據。“所有可能發生變化的集中載荷”的變化量在建立初始力學計算基準模型A。時全部為O,也就是說后面識別出的“所有可能發生變化的集中載荷”的變化量是相對于建立初始力學計算基準模型A。時結構所承受的對應集中載荷的變化量。利用支承索的無損檢測數據等能夠表達支承索的健康狀態的數據以及“所有可能發生變化的集中載荷”的變化量數據建立被評估對象初始損傷向量d。(如式(I)所示),用d。表示索結構(用初始力學計算基準模型A。表示)的被評估對象的初始健康狀態。如果沒有支承索的無損檢測數據及其他能夠表達支承索的健康狀態的數據時,或者可以認為結構初始狀態為無損傷無松弛狀態時,向量d。的中與支承索相關的各元素數值取O。向量d。中與集中載荷的變化量相關的各元素數值取O。利用索結構的設計圖、竣工圖和初始索結構的實測數據、支承索的無損檢測數據、索結構所使用的各種材料的隨溫度變化的物理和力學性能參數和初始索結構穩態溫度數據向量T。,利用力學方法(例如有限元法)計入“索結構穩態溫度數據”建立初始力學計算基準模型A。。
[0027]d0 = [dol do2...dok...doN]T (1)
[0028]式(1)中dQk (k=l, 2,3,……., N)表示初始力學計算基準模型A0中的第k個被評估對象的初始狀態,如果該被評估對象是索系統中的一根索(或拉桿),那么Cl。,表示其初始損傷,dok為O時表示無損傷,為100%時表示該索徹底喪失承載能力,介于O與100%之間時表示喪失相應比例的承載能力;如果該被評估對象是一個“可能發生變化的集中載荷”,那么Cl。,表示其初始數值,dok為0,也就是說后面識別出的“所有可能發生變化的集中載荷”的變化量是相對于建立初始力學計算基準模型A。時結構所承受的對應集中載荷的變化量。T表示向量的轉置(后同)。
[0029]在實測得到T。的同時,也就是在獲得索結構穩態溫度數據的時刻的同一時刻,使用常規方法直接測量計算得到的索結構的所有被監測量的初始數值,組成被監測量初始數值向量C。(見式(2))。要求在獲得A。的同時獲得C。,被監測量初始數值向量C。表示對應于A0的“被監測量”的具體數值。因在前述條件下,基于索結構的計算基準模型計算所得的被監測量可靠地接近于初始被監測量的實測數據,在后面的敘述中,將用同一符號來表示該計算值和實測值。
【權利要求】
1.混合監測的受損索和集中載荷遞進式識別方法,其特征在于所述方法包括: a.為敘述方便起見,本方法統一稱被評估的支承索和集中載荷為被評估對象,設被評估的支承索的數量和集中載荷的數量之和為N,即被評估對象的數量為N ;確定被評估對象的編號規則,按此規則將索結構中所有的被評估對象編號,該編號在后續步驟中將用于生成向量和矩陣;本方法用變量k表示這一編號,k=l,2,3,…,N ;確定混合監測時指定的將被監測索力的支承索,設索系統中共有Q根支承索,索結構的被監測的索力數據由索結構上M1個指定支承索的M1個索力數據來描述,索結構索力的變化就是所有指定支承索的索力的變化;每次共有M1個索力測量值或計算值來表征索結構的索力信息^是一個不小于O不大于Q的整數;確定混合監測時指定的將被監測應變的被測量點,索結構的被監測的應變數據可由索結構上K2個指定點的、及每個指定點的L2個指定方向的應變來描述,索結構應變數據的變化就是K2個指定點的所有被測應變的變化;每次共有M2個應變測量值或計算值來表征索結構應變,M2為K2和L2之積;M2是不小于O的整數;確定混合監測時指定的將被監測角度的被測量點,索結構的被監測的角度數據由索結構上K3個指定點的、過每個指定點的L3個指定直線的、每個指定直線的H3個角度坐標分量來描述,索結構角度的變化就是所有指定點的、所有指定直線的、所有指定的角度坐標分量的變化;每次共有M3個角度坐標分量測量值或計算值來表征索結構的角度信息,M3為K3、L3和H3之積;Μ3是一個不小于O的整數;確定混合監測時指定的將被監測的形狀數據,索結構的被監測的形狀數據由索結構上K4個指定點的、及每個指定點的L4個指定方向的空間坐標來描述,索結構形狀數據的變化就是K4個指定點的所有坐標分量的變化;每次共有M4個坐標測量值或計算值來表征索結構形狀,M4為K4和L4之積;Μ4是一個不小于O的整數;綜合上述混合監測的被監測量,整個索結構共有M個被監測量,M為MpM2、M3和M4之和,定義參量K,K為%、K2、K3和K4之和,K和M不得小于被評估對象的數量N ;為方便起見,在本方法中將本步所列出的M個被監測量簡稱為“被監測量”;本方 法中對同一個量實時監測的任何兩次測量之間的時間間隔不得大于30分鐘,測量記錄數據的時刻稱為實際記錄數據時刻; b.本方法定義“本方法的索結構的溫度測量計算方法”按步驟bl至b3進行; bl:查詢或實測得到索結構組成材料及索結構所處環境的隨溫度變化的傳熱學參數,利用索結構的設計圖、竣工圖和索結構的幾何實測數據,利用這些數據和參數建立索結構的傳熱學計算模型;查詢索結構所在地不少于2年的近年來的氣象資料,統計得到這段時間內的陰天數量記為T個陰天,在本方法中將白天不能見到太陽的一整日稱為陰天,統計得到T個陰天中每一個陰天的O時至次日日出時刻后30分鐘之間的最高氣溫與最低氣溫,日出時刻是指根據地球自轉和公轉規律確定的氣象學上的日出時刻,不表示當天一定可以看見太陽,可以查詢資料或通過常規氣象學計算得到所需的每一日的日出時刻,每一個陰天的O時至次日日出時刻后30分鐘之間的最高氣溫減去最低氣溫稱為該陰天的日氣溫的最大溫差,有T個陰天,就有T個陰天的日氣溫的最大溫差,取T個陰天的日氣溫的最大溫差中的最大值為參考日溫差,參考日溫差記為△ I;;查詢索結構所在地和所在海拔區間不少于2年的近年來的氣象資料或實測得到索結構所處環境的溫度隨時間和海拔高度的變化數據和變化規律,計算得到索結構所在地和所在海拔區間不少于2年的近年來的索結構所處環境的溫度關于海拔高度的最大變化率ATh,為方便敘述取ATh的單位為。C/m;在索結構的表面上取“R個索結構表面點”,取“R個索結構表面點”的具體原則在步驟b3中敘述,后面將通過實測得到這R個索結構表面點的溫度,稱實測得到的溫度數據為“R個索結構表面溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這R個索結構表面點的溫度,就稱計算得到的溫度數據為“R個索結構表面溫度計算數據”;從索結構所處的最低海拔到最高海拔之間,在索結構上均布選取不少于三個不同的海拔高度,在每一個選取的海拔高度處、在水平面與索結構表面的交線處至少選取兩個點,從選取點處引索結構表面的外法線,所有選取的外法線方向稱為“測量索結構沿壁厚的溫度分布的方向”,測量索結構沿壁厚的溫度分布的方向與“水平面與索結構表面的交線”相交,在選取的測量索結構沿壁厚的溫度分布的方向中必須包括索結構的向陽面外法線方向和索結構的背陰面外法線方向,沿每一個測量索結構沿壁厚的溫度分布的方向在索結構中均布選取不少于三個點,測量所有被選取點的溫度,測得的溫度稱為“索結構沿厚度的溫度分布數據”,其中沿與同一“水平面與索結構表面的交線”相交的、“測量索結構沿壁厚的溫度分布的方向”測量獲得的“索結構沿厚度的溫度分布數據”,在本方法中稱為“相同海拔高度索結構沿厚度的溫度分布數據”,設選取了 H個不同的海拔高度,在每一個海拔高度處,選取了 B個測量索結構沿壁厚的溫度分布的方向,沿每個測量索結構沿壁厚的溫度分布的方向在索結構中選取了 E個點,其中H和E都不小于3,B不小于2,設HBE為H與B和E的乘積,對應的共有HBE個“測量索結構沿厚度的溫度分布數據的點”,后面將通過實測得到這HBE個“測量索結構沿厚度的溫度分布數據的點”的溫度,稱實測得到的溫度數據為“HBE個索結構沿厚度溫度實測數據”,如果是利用索結構的傳熱學計算模型,通過傳熱計算得到這HBE個測量索結構沿厚度的溫度分布數據的點的溫度,就稱計算得到的溫度數據為“HBE個索結構沿厚度溫度計算數據”;設BE為B和E的乘積,本方法中在每一個選取的海拔高度處共有BE個“相同海拔高度索結構沿厚度的溫度分布數據”;在索結構所在地按照氣象學測量氣溫要求選取一個位置,將在此位置實測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫;在索結構所在地的空曠無遮擋處選取一個位置,該位置應當在全年的每一日都能得到該地所能得到的該日的最充分的日照,在該位置安放一塊碳鋼材質的平板,稱為參考平板,參考平板與地面不可接觸,參考平板離地面距離不小于1.5米,該參考平板的一面向陽,稱為向陽面,參考平板的向陽面是粗糙的和深色的,參考平板的向陽面應當在全年的每一日都能得到一塊平板在該地所能得到的該日的最充分的日照,參考平板的非向陽面覆有保溫材料,將實時監測得到參考平板的向陽面的溫度; b2:實時監測得到上述R個索結構表面點的R個索結構表面溫度實測數據,同時實時監測得到前面定義的索結構沿厚度的溫度分布數據,同時實時監測得到符合氣象學測量氣溫要求的索結構所在環境的氣溫數據;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據序列,索結構所在環境的氣溫實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的索結構所在環境的氣溫實測數據按照時間先后順序排列,找到索結構所在環境的氣溫實測數據序列中的最高溫度和最低溫度,用索結構所在環境的氣溫實測數據序列中的最高溫度減去最低溫度得到索結構所在環境的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,稱為環境最大溫差,記為ATemax ;由索結構所在環境的氣溫實測數據序列通過常規數學計算得到索結構所在環境的氣溫關于時間的變化率,該變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據序列,參考平板的向陽面的溫度的實測數據序列由當日日出時刻到次日日出時刻后30分鐘之間的參考平板的向陽面的溫度的實測數據按照時間先后順序排列,找到參考平板的向陽面的溫度的實測數據序列中的最高溫度和最低溫度,用參考平板的向陽面的溫度的實測數據序列中的最高溫度減去最低溫度得到參考平板的向陽面的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,稱為參考平板最大溫差,記為ATpmax ;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的所有R個索結構表面點的索結構表面溫度實測數據序列,有R個索結構表面點就有R個索結構表面溫度實測數據序列,每一個索結構表面溫度實測數據序列由一個索結構表面點的當日日出時刻到次日日出時刻后30分鐘之間的索結構表面溫度實測數據按照時間先后順序排列,找到每一個索結構表面溫度實測數據序列中的最高溫度和最低溫度,用每一個索結構表面溫度實測數據序列中的最高溫度減去最低溫度得到每一個索結構表面點的溫度的當日日出時刻到次日日出時刻后30分鐘之間的最大溫差,有R個索結構表面點就有R個當日日出時刻到次日日出時刻后30分鐘之間的最大溫差數值,其中的最大值稱為索結構 表面最大溫差,記為;由每一索結構表面溫度實測數據序列通過常規數學計算得到每一個索結構表面點的溫度關于時間的變化率,每一個索結構表面點的溫度關于時間的變化率也隨著時間變化;通過實時監測得到當日日出時刻到次日日出時刻后30分鐘之間的、在同一時刻、HBE個“索結構沿厚度的溫度分布數據”后,計算在每一個選取的海拔高度處共計BE個“相同海拔高度索結構沿厚度的溫度分布數據”中的最高溫度與最低溫度的差值,這個差值的絕對值稱為“相同海拔高度處索結構厚度方向最大溫差”,選取了 H個不同的海拔高度就有H個“相同海拔高度處索結構厚度方向最大溫差”,稱這H個“相同海拔高度處索結構厚度方向最大溫差”中的最大值為“索結構厚度方向最大溫差”,記為Δ Ttmax ; b3:測量計算獲得索結構穩態溫度數據;首先,確定獲得索結構穩態溫度數據的時刻,與決定獲得索結構穩態溫度數據的時刻相關的條件有六項,第一項條件是獲得索結構穩態溫度數據的時刻介于當日日落時刻到次日日出時刻后30分鐘之間,日落時刻是指根據地球自轉和公轉規律確定的氣象學上的日落時刻,可以查詢資料或通過常規氣象學計算得到所需的每一日的日落時刻;第二項條件的a條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,參考平板最大溫差Λ Tpmax和索結構表面最大溫差ATsmax都不大于5攝氏度;第二項條件的b條件是在當日日出時刻到次日日出時刻后30分鐘之間的這段時間內,在前面測量計算得到的環境最大誤差Λ Traiax不大于參考日溫差Λ ?;,且參考平板最大溫差ATpmax減去2攝氏度后不大于Λ Temax,且索結構表面最大溫差ATsmax不大于ATpmax;只需滿足第二項的a條件和b條件中的一項就稱為滿足第二項條件;第三項條件是在獲得索結構穩態溫度數據的時刻,索結構所在環境的氣溫關于時間的變化率的絕對值不大于每小時0.1攝氏度;第四項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的溫度關于時間的變化率的絕對值不大于每小時0.1攝氏度;第五項條件是在獲得索結構穩態溫度數據的時刻,R個索結構表面點中的每一個索結構表面點的索結構表面溫度實測數據為當日日出時刻到次日日出時刻后30分鐘之間的極小值;第六項條件是在獲得索結構穩態溫度數據的時刻,“索結構厚度方向最大溫差” 不大于I攝氏度;本方法利用上述六項條件,將下列三種時刻中的任意一種稱為“獲得索結構穩態溫度數據的數學時刻”,第一種時刻是滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第五項條件的時刻,第二種時刻是僅僅滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第六項條件的時刻,第三種時刻是同時滿足上述“與決定獲得索結構穩態溫度數據的時刻相關的條件”中的第一項至第六項條件的時刻;當獲得索結構穩態溫度數據的數學時刻就是本方法中實際記錄數據時刻中的一個時,獲得索結構穩態溫度數據的時刻就是獲得索結構穩態溫度數據的數學時刻;如果獲得索結構穩態溫度數據的數學時刻不是本方法中實際記錄數據時刻中的任一個時刻,則取本方法最接近于獲得索結構穩態溫度數據的數學時刻的那個實際記錄數據的時刻為獲得索結構穩態溫度數據的時刻;本方法將使用在獲得索結構穩態溫度數據的時刻測量記錄的量進行索結構相關健康監測分析;本方法近似認為獲得索結構穩態溫度數據的時刻的索結構溫度場處于穩態,即此時刻的索結構溫度不隨時間變化,此時刻就是本方法的“獲得索結構穩態溫度數據的時刻”;然后,根據索結構傳熱特性,利用獲得索結構穩態溫度數據的時刻的“R個索結構表面溫度實測數據”和“HBE個索結構沿厚度溫度實測數據”,利用索結構的傳熱學計算模型,通過常規傳熱計算得到在獲得索結構穩態溫度數據的時刻的索結構的溫度分布,此時索結構的溫度場按穩態進行計算,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據包括索結構上R個索結構表面點的計算溫度,R個索結構表面點的計算溫度稱為R個索結構穩態表面溫度計算數據,還包括索結構在前面選定的HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度,HBE個“測量索結構沿厚度的溫度分布數據的點”的計算溫度稱為“HBE個索結構沿厚度溫度計算數據”,當R個索結構表面溫度實測數據與R個索結構穩態表面溫度計算數據對應相等時,且“HBE個索結構沿厚度溫度實測數據”與“HBE個索結構沿厚度溫度計算數據”對應相等時,計算得到的在獲得索結構穩態溫度數據的時刻的索結構的溫度分布數據在本方法中稱為“索結構穩態溫度數據”,此時的“R個索結構表面溫度實測數據”稱為“R個索結構穩態表面溫度實測數據”,“HBE個索結構沿厚度溫度實測數據”稱為“HBE個索結構沿厚度穩態溫度實測數據”;在索結構的表面上取“R個索結構表面點”時,“R個索結構表面點”的數量與分布必須滿足三個條件,第一個條件是當索結構溫度場處于穩態時,當索結構表面上任意一點的溫度是通過“R個索結構表面點”中與索結構表面上該任意點相鄰的點的實測溫度線性插值得到時,線性插值得到的索結構表面上該任意點的溫度與索結構表面上該任意點的實際溫度的誤差不大于5% ;索結構表面包括支承索表面;第二個條件是“R個索結構表面點”中在同一海拔高度的點的數量不小于4,且“R個索結構表面點”中在同一海拔高度的點沿著索結構表面均布;“R個索結構表面點”沿海拔高度的所有兩兩相鄰索結構表面點的海拔高度之差的絕對值中的最大值Ah不大于0.2°C除以Λ Th得到的數值,為方便敘述取Λ Th的單位為。C/m,為方便敘述取Ah的單位為m ;“R個索結構表面點”沿海拔高度的兩兩相鄰索結構表面點的定義是指只考慮海拔高度時,在“R個索結構表面點”中不存在一個索結構表面點,該索結構表面點的海拔高度數值介于兩兩相鄰索結構表面點的海拔高度數值之間;第三個條件是查詢或按氣象學常規計算得到索結構所在地和所在海拔區間的日照規律,再根據索結構的幾何特征及方位數據,在索結構上找到全年受日照時間最充分的那些表面點的位置,“R個索結構表面點”中至少有一個索結構表面點是索結構上全年受日照時間最充分的那些表面點中的一個點;c.按照“本方法的索結構的溫度測量計算方法”直接測量計算得到初始狀態下的索結構穩態溫度數據,初始狀態下的索結構穩態溫度數據稱為初始索結構穩態溫度數據,記為“初始索結構穩態溫度數據向量T。” ;實測或查資料得到索結構所使用的各種材料的隨溫度變化的物理和力學性能參數;在實測得到T。的同時,也就是在獲得初始索結構穩態溫度數據向量T。的時刻的同一時刻,直接測量計算得到初始索結構的實測數據,初始索結構的實測數據是包括索結構集中載荷測量數據、索結構分布載荷測量數據、索結構體積載荷測量數據、所有被監測量的初始數值、所有支承索的初始索力數據、初始索結構模態數據、初始索結構應變數據、初始索結構幾何數據、初始索結構支座廣義坐標數據、初始索結構角度數據、初始索結構空間坐標數據在內的實測數據,在得到初始索結構的實測數據的同時,測量計算得到包括支承索的無損檢測數據在內的能夠表達支承索的健康狀態的數據,此時的能夠表達支承索的健康狀態的數據稱為支承索初始健康狀態數據;所有被監測量的初始數值組成被監測量初始數值向量C。,被監測量初始數值向量C。的編號規則與M個被監測量的編號規則相同;利用支承索初始健康狀態數據以及索結構集中載荷測量數據建立被評估對象初始損傷向量d。,向量d。表示用初始力學計算基準模型A。表示的索結構的被評估對象的初始健康狀態;被評估對象初始損傷向量d。的元素個數等于N,d。的元素與被評估對象是 對應關系,向量d。的兀素的編號規則與被評估對象的編號規則相同;如果d。的某一個元素對應的被評估對象是索系統中的一根支承索,那么d。的該元素的數值代表對應支承索的初始損傷程度,若該元素的數值為O,表示該元素所對應的支承索是完好的,沒有損傷的,若其數值為100%,則表示該元素所對應的支承索已經完全喪失承載能力,若其數值介于O和100%之間,則表示該支承索喪失了相應比例的承載能力;如果d。的某一個元素對應的被評估對象是某一個集中載荷,本方法中取d。的該元素數值為0,代表這個集中載荷的變化的初始數值為O ;如果沒有支承索的無損檢測數據及其他能夠表達支承索的健康狀態的數據時,或者可以認為結構初始狀態為無損傷無松弛狀態時,向量d。中與支承索相關的各元素數值取O ; d.根據索結構的設計圖、竣工圖和初始索結構的實測數據、支承索初始健康狀態數據、索結構集中載荷測量數據、索結構分布載荷測量數據、索結構體積載荷測量數據、索結構所使用的各種材料的隨溫度變化的物理和力學性能參數、初始索結構穩態溫度數據向量T。和和前面步驟得到的所有的索結構數據,建立計入“索結構穩態溫度數據”的索結構的初始力學計算基準模型A。,基于A。計算得到的索結構計算數據必須非常接近其實測數據,其間的差異不得大于5% ;對應于A。的“索結構穩態溫度數據”就是“初始索結構穩態溫度數據向量T?!?;對應于A。的被評估對象健康狀態用被評估對象初始損傷向量d。表示;對應于A。的所有被監測量的初始數值用被監測量初始數值向量C。表示;T。和d。是A。的參數,由A。的力學計算結果得到的所有被監測量的初始數值與C。表示的所有被監測量的初始數值相同,因此也可以說C。由A。的力學計算結果組成,在本方法中A。、C。、d。和T。是不變的; e.在本方法中,字母i除了明顯地表示步驟編號的地方外,字母i僅表示循環次數,即第i次循環;第i次循環開始時需要建立的或已建立的索結構的當前初始力學計算基準模型記為當前初始力學計算基準模型A^A。和Ai。計入了溫度參數,可以計算溫度變化對索結構的力學性能影響;第i次循環開始時,對應于Aitj的“索結構穩態溫度數據”用當前初始索結構穩態溫度數據向量Titj表示,向量Titj的定義方式與向量T。的定義方式相同,Titj的元素與T。的元素一一對應;第i次循環開始時需要的被評估對象當前初始損傷向量記為(^。,屮。表示該次循環開始時索結構Ai0的被評估對象的健康狀態,Cli0的定義方式與d。的定義方式相同,f。的元素與d。的元素一一對應;第i次循環開始時,所有被監測量的初始值,用被監測量當前初始數值向量C1。表示,向量C1。的定義方式與向量C。的定義方式相同,C1。的元素與C。的元素一一對應,被監測量當前初始數值向量Ci。表示對應于Aitj的所有被監測量的具體數值;1"。和f。是Aitj的特性參數,C1。由Ai0的力學計算結果組成;第一次循環開始時,Aitj記為A1。,建立A1。的方法為使A1。等于A。;第一次循環開始時,Titj記為T1。,建立T1。的方法為使T1。等于T。;第一次循環開始時,Cli0記為d1。,建立d1。的方法為使d1。等于d。;第一次循環開始時,Ci0記為C10,建立C1。的方法為使C1。等于C0 ; f.從這里進入由第f步到第q步的循環;在結構服役過程中,按照“本方法的索結構的溫度測量計算方法”不斷實測計算獲得索結構穩態溫度數據的當前數據,所有“索結構穩態溫度數據”的當前數據組成當前索結構穩態溫度數據向量Ti,向量Ti的定義方式與向量T。的定義方式相同,Ti的元素與T。的元素一一對應;在實測得到向量Ti的同時,實測得到在獲得當前索結構穩態溫度數據向量Ti的時刻的同一時刻的索結構中所有被監測量的當前值,所有這些數值組成被監測量當前數值向量Ci,向量Ci的定義方式與向量C。的定義方式相同,C1的兀素與C。的兀素對應,表不相同被監測量在不同時刻的數值; g.根據當前索結構穩態溫度數據向量T1,按照步驟gl至g3更新當前初始力學計算基準模型A1。、被監測量當前初始數值向量C1。和當前初始索結構穩態溫度數據向量Τ1。,而被評估對象當前初始損傷向量f。保持不變; gl.比較Ti與f。,如果Ti等于f。,則A1。、Ci0和Titj保持不變;否則需要按下列步驟對Ai0和Ti0進行更新; g2.計算Ti與T。的差,Ti與T。的差就是當前索結構穩態溫度數據關于初始索結構穩態溫度數據的變化,Ti與T。的差用穩態溫度變化向量S表示,S等于Ti減去T。,S表示索結構穩態溫度數據的變化; g3.對A。中的索結構施加溫度變化,施加的溫度變化的數值就取自穩態溫度變化向量S,對A。中的索結構施加的溫度變化后得到`更新的當前初始力學計算基準模型A1。,更新A1。的同時,Titj所有元素數值也用Ti的所有元素數值對應代替,即更新了 Τ1。,這樣就得到了正確地對應于Aitj的Titj ;此時(保持不變;當更新Aitj后,Aitj的索的健康狀況用被評估對象當前初始損傷向量(表示,Aitj的索結構穩態溫度用當前索結構穩態溫度數據向量Ti表示,更新C1。的方法是:當更新(后,通過力學計算得到Aitj中所有被監測量的、當前的具體數值,這些具體數值組成C、; h.在當前初始力學計算基準模型Ai。的基礎上,按照步驟hi至步驟h4進行若干次力學計算,通過計算建立單位損傷被監測量數值變化矩陣Λ Ci和被評估對象單位變化向量Diu ; h1.在第i次循環開始時,直接按步驟h2至步驟h4所列方法獲得Λ Ci和Diu ;在其它時刻,當在步驟g中對Ai0進行更新后,必須按步驟h2至步驟h4所列方法重新獲得Λ Ci和Diu,如果在步驟g中沒有對Aitj進行更新,則在此處直接轉入步驟i進行后續工作; h2.在當前初始力學計算基準模型Aitj的基礎上進行若干次力學計算,計算次數數值上等于所有被評估對象的數量N,有N個評估對象就有N次計算;依據被評估對象的編號規貝U,依次進行計算;每一次計算假設只有一個被評估對象在原有損傷或集中載荷的基礎上再增加單位損傷或集中載荷單位變化,具體的,如果該被評估對象是索系統中的一根支承索,那么就假設該支承索再增加單位損傷,如果該被評估對象是一個集中載荷,就假設該集中載荷再增加集中載荷單位變化,用Diuk記錄這一增加的單位損傷或集中載荷單位變化,其中k表示增加單位損傷或集中載荷單位變化的被評估對象的編號,Diuk是被評估對象單位變化向量Diu的一個元素,被評估對象單位變化向量Diu的元素的編號規則與向量d。的元素的編號規則相同;每一次計算中再增加單位損傷或集中載荷單位變化的被評估對象不同于其它次計算中再增加單位損傷或集中載荷單位變化的被評估對象,每一次計算都利用力學方法計算索結構的所有被監測量的當前計算值,每一次計算得到的所有被監測量的當前計算值組成一個被監測量計算當前向量;當假設第k個被評估對象再增加單位損傷或集中載荷單位變化時,用Citk表示對應的“被監測量計算當前向量”;在本步驟中給各向量的元素編號時,應同本方法中其它向量使用同一編號規則,以保證本步驟中各向量中的任意一個元素,同其它向量中的、編號相同的兀素,表達了同一被監測量或同一對象的相關信息;C\k的定義方式與向量C。的定義方式相同,C1tk的兀素與C。的兀素對應; h3.每一次計算得到的向量Citk減去向量C1。得到一個向量,再將該向量的每一個元素都除以本次計算所假設的單位損傷或集中載荷單位變化數值后得到一個“被監測量的數值變化向量δ CY ;有N個被評估對象就有N個“被監測量的數值變化向量”; h4.由這N個“被監測量的數值變化向量”按照N個被評估對象的編號規則,依次組成有N列的“單位損傷被監測量數值變化矩陣△ Ci”;單位損傷被監測量數值變化矩陣八^勺每一列對應于一個被監測量單位變化向量;單位損傷被監測量數值變化矩陣ACi的每一行對應于同一個被監測量在不同被評估對象增加單位損傷或集中載荷單位變化時的不同的單位變化幅度;單位損傷被監測量數值變化矩陣ACi的列的編號規則與向量d。的元素的編號規則相同,單位損傷被監測量數值變化矩陣ACi的行的編號規則與M個被監測量的編號規則相同;i.定義當前名義損傷向量(和當前實際損傷向量dSd1。和Cli的元素個數等于被評估對象的數量,Clic和Cli的元素和被評估對象之間是--對應關系,f。的元素數值代表對應被 評估對象的名義損傷程度或名義集中載荷變化量,Clic和Cli與被評估對象初始損傷向量d。的元素編號規則相同,Clic的元素、Cli的元素與d。的元素是一一對應關系; j.依據被監測量當前數值向量Ci同“被監測量當前初始數值向量C1?!?、“單位損傷被監測量數值變化矩陣AC1”和“當前名義損傷向量屮?!遍g存在的近似線性關系,該近似線性關系可表達為式1,式I中除f。外的其它量均為已知,求解式I就可以算出當前名義損傷向量札; Ci =Ci0+AC ^d1c 式 I k.利用式2表達的當前實際損傷向量Cli的第k個元素Clik同被評估對象當前初始損傷向量必的第k個元素d、和當前名義損傷向量的第k個元素Clidt間的關系,計算得到當前實際損傷向量Cli的所有元素;
_ J1-(1-0(卜0’如果該元素對應于一根支承索巧
k=\ dMk,如果該元素不對應于一根支承索 式2中k=l,2,3,……,N ;(1\表示第i次循環中第k個被評估對象的當前實際健康狀態,如果該被評估對象是索系統中的一根支承索,那么Clik表示其當前實際損傷,Clik為O時表示無損傷,為100%時表示該支承索徹底喪失承載能力,介于O與100%之間時表示喪失相應比例的承載能力;如果該被評估對象是一個集中載荷,那么Clik表示該集中載荷的實際變化量;至此本方法實現了剔除集中載荷變化和結構溫度變化的影響的、索結構的受損索識別,同時實現了剔除結構溫度變化和支承索健康狀態變化影響的、集中載荷變化量的識別;l.在求得當前名義損傷向量后,按照式3建立標識向量Bi,式4給出了標識向量Bi的第k個元素的定義;
【文檔編號】G01D21/02GK103616232SQ201310662336
【公開日】2014年3月5日 申請日期:2013年12月9日 優先權日:2013年12月9日
【發明者】韓玉林, 韓佳邑 申請人:東南大學

  • 專利名稱:一種慣性衛星姿態融合方法技術領域:本發明屬于慣性衛星組合導航技術領域,涉及一種慣性衛星姿態融合方法。背景技術:現有的慣性衛星組合方法一般采用衛星定位系統的速度、位置為觀測量,對慣導系統的速度誤差、位置誤差、失調角等參數進行估計,其
  • 專利名稱:雙向回轉角度標尺的制作方法技術領域:本實用新型屬于角度計量的標尺,具體是需要指示回轉位置的設備,例如,應用于鈷-60放射治療機機頭回轉位置指示用的一種雙向回轉角度標尺。其標尺面為塑料薄膜;可以是PVC薄膜;粘膠層可以是不干膠層;離
  • 專利名稱:矢量相控陣超聲檢測參數優化方法技術領域:本發明涉及超聲波檢測技術,尤其是相控陣超聲檢測方法。技術背景超聲檢測時往往需要對物體內某一區域進行成像,為此,必須進行聲束掃 描。常歸目控陣超聲檢測是通過控制換能器陣中各個陣元激勵(或接收)
  • 便攜式鋼筋混凝土檢測儀的制作方法【專利摘要】本發明公開了一種便攜式鋼筋混凝土檢測儀,包括有處理器和鋼筋混凝土檢測傳感器,鋼筋混凝土檢測傳感器將檢測數據傳送給處理器,所述處理器為智能手機或便攜式電腦。所述便攜式電腦為筆記本電腦或平板電腦。所述
  • 專利名稱:用于對汽車切換結構網絡中節點重新編程的系統和方法技術領域:本發明通常涉及交通工具中的通信網絡,特別地,涉及一種用于 使用診斷接口對汽車切換結構網絡中的節點重新編程的系統和方法。背景技術:在2001年8月31日提交的題為"
  • 專利名稱:穩流流量計的制作方法技術領域:在實用新型涉及一種入口流量受來源壓力變動影響不大,流量波動較小的穩流流量計,可應用于工業測量中對被測液體流量的標定。在工業測量中,為了測定液體中某種物質的含量,為了實現動態測量,都要對流徑測量儀器的被
山東科威數控機床有限公司
全國服務熱線:13062023238
電話:13062023238
地址:滕州市龍泉工業園68號
關鍵詞:銑床,數控銑床,龍門銑床
公司二維碼
Copyright 2010-2024 http://www.shangjia178.com 版權所有 All rights reserved 魯ICP備19044495號-12
主站蜘蛛池模板: 日本视频播放免费线上观看| 日韩高清毛片| 国产精品久久国产三级国电话系列| 香蕉色网| 国产在线精品一区二区夜色| 成人综合在线视频免费观看完整版| 欧美日韩一本大道香蕉欧美| 成年人免费视频观看| 亚洲一区视频在线| 欧美精品在线观看| 国产成人在线综合| 亚洲精品福利在线| 亚洲无线视频| 日批免费看| 久久久久国产视频| 成人国产精品999视频| 成年人视频免费在线播放| 婷婷色在线| 欧美激情一区二区三区中文字幕| 国产成人v视频在线观看| 亚洲精品理论电影在线观看| 亚洲视频在线一区二区三区| 日本成人在线免费| 久久影院最新消息| 国产免费观看网站| dxj国产在线观看| 国产成人精品免费视频大全办公室| 亚洲国产精品综合福利专区| 欧美日本高清| 精品国产综合| 国产精品福利资源在线| 国产精品嫩草影视在线观看| 影音先锋每日资源| 亚州黄色| 日本免费看视频| 免费网站毛片| 激情影院成人区免费观看视频| 成年人在线免费看| 99re这里有免费视频精品| 黄色三级在线观看| 在线看成人|